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SUMMARY
Transcription induces a wave of DNA supercoiling, altering the binding affinity of RNA polymerases and re-
shaping the biochemical landscape of gene regulation. As supercoiling rapidly diffuses, transcription dynam-
ically reshapes the regulation of proximal genes, forming a complex feedback loop. However, a theoretical
framework is needed to integrate biophysical regulation with biochemical transcriptional regulation. To
investigate the role of supercoiling-mediated feedback within multi-gene systems, we model transcriptional
regulation under the influence of supercoiling-mediated polymerase dynamics, allowing us to identify pat-
terns of expression that result from physical inter-gene coupling. We find that gene syntax—the relative
ordering and orientation of genes—defines the expression profiles, variance, burst dynamics, and inter-
gene correlation of two-gene systems. Furthermore, supercoiling can enhance or weaken biochemical regu-
lation. Our results suggest that supercoiling couples behavior between neighboring genes, providing a reg-
ulatory mechanism that tunes transcriptional variance in engineered gene networks and explains the
behavior of co-localized native circuits.
INTRODUCTION

Cells coordinate complex behaviors through precise spatiotem-

poral control of gene expression. To rapidly advance gene- and

cell-based therapies, synthetic biology aims to harness the po-

wer of native biology by constructing synthetic gene regulatory

networks capable of dynamically prescribing cellular processes,

states, and identities (Chen et al., 2012; Beitz et al., 2022; Purnick

and Weiss, 2009; Elowitz and Lim, 2010). Synthetic networks

process diverse inputs into complex logical and temporal re-

sponses (Weinberg et al., 2017; Xie et al., 2011; Tabor et al.,

2009). From oscillators to pulse generators, synthetic circuits

can precisely coordinate dynamic patterns of gene expression

across populations of cells to control cell fate (Gardner et al.,

2000; Elowitz and Leibler, 2000; Stricker et al., 2008; Danino

et al., 2010; Ma et al., 2022; Park et al., 2019; Bashor et al.,

2008; Galloway et al., 2013). However, rational de novo design

of synthetic circuits remains challenging. Despite extensive bio-

molecular modeling, integration of single genetic elements into

systems often leads to emergent behaviors, requiring iterative

design-build-test cycles to achieve the desired performance

(Jones et al., 2020; Frei et al., 2020; Qian et al., 2017). Com-

pounding the challenge, transcription exhibits significant

extrinsic and intrinsic noise (To and Maheshri, 2010; Zopf

et al., 2013; Desai et al., 2021). In particular, the stochastic nature

of transcription makes coordinating expression across multiple

genetic elements challenging (Rodriguez and Ren, 2019; Rodri-

guez and Larson, 2020; Quarton et al., 2020). Spatial variation
C
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in the nucleus and biochemical dynamics in condensates may

contribute to bursting but provide limited parameters for tuning

transcriptional noise (Henninger et al., 2020; Guo and Yang,

2019). Alternatively, mechanical sources of gene regulation offer

one potential mechanism by which to understand and harness

transcriptional noise to improve the predictable design of gene

circuits (Johnstone and Galloway, 2021; Ancona et al., 2019;

Kim et al., 2019; El Houdaigui et al., 2019; Meyer and Beslon,

2014).

The mechanical forces of DNA supercoiling powerfully shape

transcriptional variance (Desai et al., 2021; Chong et al., 2014).

In the process of transcription, RNA polymerases induce a lead-

ing wave of positive DNA supercoiling (Wu et al., 1988; Liu and

Wang, 1987), reshaping the local structure of chromatin (Achar

et al., 2020; Teves and Henikoff, 2014; Naughton et al., 2013;

Guo et al., 2021). At the kilobase scale, chromatin structure cor-

relates with gene regulation (HsiehTsung-Han et al., 2020; Row-

leyNichols et al., 2017; Krietenstein et al., 2020). In yeast and hu-

man cells, transcription-induced supercoiling demarks bounds

of gene activity (Achar and Jagadheesh, 2020; Naughton et al.,

2013; Kouzine et al., 2013). In particular, transcriptional activity

dictates the strength of contact domains, indicating a role for

transcription in forming and maintaining interactions at the kilo-

base scale (Rowley and Corces, 2018; RowleyNichols et al.,

2017). Together these data suggest that the process of

transcription drives formation of supercoiling-linked, kilobase-

scale structures that feed back into transcriptional regulation of

gene expression. As supercoiling rapidly diffuses across long
ell Reports 41, 111492, October 18, 2022 ª 2022 The Author(s). 1
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distances (Loenhout and Dekker, 2012), transcriptional activity

at one site may affect the overall activity and dynamics of tran-

scription of proximal genes (Sevier and Levine, 2018; Sevier

and Hormoz, 2022; Tripathi et al., 2021). Understanding how

supercoiling induces coupling between neighboring genes pro-

vides the opportunity to improve the predictable design of trans-

genic systems from simple reporters to sophisticated dynamic

circuits.

Here we develop a model of transcriptional regulation that in-

tegrates DNA supercoiling to examine how the orientation and

placement of neighboring genes affects expression. Extending

from a model of supercoiling-dependent polymerase motion

(Sevier and Levine, 2018), our model includes the effects of

supercoiling on polymerase binding and initiation. Specifically,

we model RNA polymerase binding and initiation as a function

of DNA supercoiling, such that underwound DNA favors RNA

polymerase binding and overwound DNA limits binding. To

extract experimentally testable predictions, we apply our model

to simple two-gene systems that include a constitutive reporter

and an inducible gene. Using these two-gene systems, we find

that DNA supercoiling strongly influences the profile of gene

expression and that influence is defined by syntax—the relative

orientation and position of genetic elements—and the enclos-

ing boundary conditions. In addition to regulating the output

of simulated genes, supercoiling-dependent feedback tunes

the size and frequency of transcriptional bursts. To investigate

how these tunable parameters may affect synthetic gene cir-

cuits, we applied our model to a canonical gene circuit, a syn-

thetic toggle switch constructed with different syntaxes. We

find that circuit syntax affects the stability of states and sets

biochemical parameters required for bistability, including

repressor cooperativity and RNA stability. Finally, we explored

how DNA supercoiling might support transcriptional coordina-

tion within the native genome of zebrafish (Danio rerio) to

enable somite segmentation. We find that DNA supercoiling

acts as a mechanism for coordinating expression between

divergently expressed genes in the segmentation network.

Supercoiling-dependent feedback supports tight regulation of

these proximal segmentation genes, providing a molecular

mechanism for the precise coordination of gene expression

observed during somite formation (Zinani et al., 2021). Thus,

supercoiling-mediated feedback represents a testable regula-

tory mechanism that can both explain native behaviors and

guide synthetic designs.

RESULTS

Simulating the behavior of native and synthetic circuits under the

influence of transcription-induced feedback requires a model

that integrates explicitly modeled RNA polymerase (RNAP) mo-

tion and RNA- and protein-mediated feedback mechanisms.

Our method combines three modeling levels: an ordinary differ-

ential equation system that simulates the continuous progres-

sion of polymerases loaded onto DNA, a core stochastic system

that models supercoiling-dependent polymerase initiation, and a

user-specified stochastic layer that allows for simulation of other

modes of transcriptional regulation such as the promoter-

repressive and -activating interactions that are often included
2 Cell Reports 41, 111492, October 18, 2022
in synthetic circuits (see STAR Methods for details on model

development).

As RNA polymerases move along chromatin, positive super-

coiling is generated ahead of the polymerase and negative

supercoiling is generated behind. Supercoiling generation oc-

curs because the drag of the nascent mRNA rotating with the

polymerase is balanced by torque arising from the over- and un-

der-winding of the DNA (Figure 1). On the length scale of tens of

kilobases, supercoiling diffusion is negligible, causing the super-

coiling density, s, to take on a constant value between polymer-

ases. Here, we model supercoiling as affecting gene expression

in two ways: excessive supercoiling can both stall polymerases

due to excess torque and enhance or suppress polymerase

binding at promoter regions due to supercoiling-dependent initi-

ation (Figure 1; STAR Methods).

Gene syntax and boundary conditions define DNA
supercoiling dynamics, expression profiles, and noise
In order to characterize the behavior of supercoiling-mediated

feedback, we simulated a series of two-gene systems. These

experimentally accessible circuits allow us to test and under-

stand the core design considerations—syntax, relevant bound-

ary conditions, and other experimentally tunable parameters—

within a well-defined and controlled system. Our two-gene sys-

tems consist of a reporter gene that is constitutively active and

an adjacent, inducible gene placed in either a tandem orientation

with the reporter upstream, tandem orientation with the reporter

downstream, convergent orientation, or divergent orientation

(Figure 2A).

Varying syntax, we examined how boundary conditions affect

the expression profiles of the reporter and inducible genes. The

type of boundary condition determines how transcriptionally

generated supercoiling propagates to adjacent genes. Experi-

mentally, plasmid constructs and genomically integrated cas-

settes allow for interrogation of circular and linear boundary con-

ditions, respectively. Plotting reporter expression as a function of

adjacent gene induction, we observed that circular boundary

conditions show a monotonic increase in reporter output that

scales by syntax (Figure 2B). With circular boundary conditions,

both the convergent and divergent syntaxes show a large

enhancement of expression relative to the uninduced case,

whereas the tandem cases show only a slight enhancement.

This phenomenon occurs because, on a circle, the convergent

and divergent syntaxes differ only in the relative lengths of the in-

tergenic and inter-promoter regions; as such, negative super-

coiling density will accumulate in the inter-promoter region,

enhancing expression in the convergent and divergent syntaxes.

In contrast, linear boundary conditions show diverse behaviors.

The upstream-tandem and divergent syntaxes maintain high

expression levels, while the convergent and downstream-tan-

dem syntaxes show decreasing reporter expression with

increasing induction of the neighboring gene.

Transcriptional noise substantially contributes to variance of

gene expression (Quarton et al., 2020), often confounding circuit

designs. Thus, designing circuits to respond to or suppress

noise may improve circuit performance. To investigate how syn-

tax affects expression profiles and noise, we simulated the

ensemble behavior for circular and linear two-gene systems at



Figure 1. Four key variables define the loca-

tion of each polymerase: its linear distance z

along the genome, the length of the nascent

mRNA transcript x, the rotation of the poly-

merase q, and the local DNA excess twist 4

The relaxed DNA twist frequency u0 has value

u0 = 1:85 radians/nm. The tradeoff between RNAP

rotation and DNA rotation generates supercoiling

upstream and downstream, with the drag gener-

ated by the nascent mRNA primarily balancing the

torque caused by generated supercoils. In the limit

of fast supercoiling relaxation relative to polymer-

ase motion, the supercoiling density is constant in

the region between polymerases and can be

calculated from the slope of the linearly interpo-

lated 4ðzÞ graph. Using an energy model respon-

sive to local supercoiling, we can derive super-

coiling-dependent initiation terms to model

differential polymerase loading rates.
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equal transcriptional induction (gray dotted line in Figure 2B). To

examine different forms of noise, we decompose the population

variance into an extrinsic noise component that describes how

‘‘all’’ genes co-vary within a cell and an intrinsic noise compo-

nent that describes the inter-gene variance within a cell. Then,

we define the noise ratio as the intrinsic noise divided by the

extrinsic noise. For the circular-boundary condition simulations,

we found that all four ensembles are dominated by extrinsic

noise (Figure 2C). In contrast, while the tandem syntaxes with

linear boundary conditions show approximately equal intrinsic

and extrinsic noise, the linear convergent and divergent popula-

tions showed diverging shifts in the variance distribution (Fig-

ure 2D). Despite similar levels of extrinsic noise, the divergent

syntax minimizes intrinsic variation between the two genes while

the convergent syntax maximizes inter-gene variation. Moving

forward, we used the linear set of boundary conditions to analyze

system behaviors as we observe the richest set of behaviors un-

der these boundary conditions.

To understand the mechanisms that support syntax-specific

expression profiles (Figure 2D), we examined the ensemble

supercoiling density of our two-gene systems. Putatively, differ-

ences in supercoiling across the two-gene systems give rise to

differences in RNAP initiation and thus affect gene expression.
C

To observe supercoiling across the two-

gene systems, we averaged the super-

coiling density across the simulated

ensemble. To examine how induction of

the adjacent gene changes supercoiling

density, we compared the profiles for

when the adjacent gene is uninduced (0-

fold induction) and induced (1-fold induc-

tion). As expected, the uninduced cases

uniformly show that positive supercoiling

accumulates downstream of the constitu-

tively active reporter gene while negative

supercoiling accumulates upstream (Fig-

ure 2E; for other induction levels, see Fig-

ure S1A). Differences in basal expression
of the reporter correspond to differences in supercoiling profile

across the different syntaxes.While each uninduced case gener-

ates an equal magnitude of positive and negative supercoiling

upstream and downstream, the distance from the reporter

gene to the boundaries differs depending on syntax, leading to

the shorter segment having the higher magnitude of supercoiling

density. Upon induction of the adjacent gene, supercoiling accu-

mulates within the intergenic regions in a syntax-specific

manner.

Supercoiling density determines both supercoiling-dependent

initiation and polymerase stalling. Changing the inter-gene

spacing directly tunes the transcriptional activity required to

reach a specified supercoiling density and thus reach different

expression profiles. To understand the spacing-driven devia-

tions in reporter behavior, we simulated our linear two-gene cir-

cuits with different inter-gene spacings from 500 bp to 10 kb and

plotted the reporter output of each circuit (Figure 2F). We found

that the convergent and tandem-upstream syntaxes show mini-

mal spacing-dependent changes in reporter output; the reporter

output in these two syntaxes is mostly dependent on the level of

adjacent induction. In contrast, the reporter output in the diver-

gent and tandem-downstream syntaxes depends on inter-

gene spacing. With weak adjacent induction in the divergent
ell Reports 41, 111492, October 18, 2022 3
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case (blue curves), decreasing the inter-gene spacing decreases

reporter output. We attribute this decrease to the effect of poly-

merase stalling; a small inter-gene spacing increases the local

supercoiling density which can lead to polymerase stalling. At

high adjacent induction (red curves), strong supercoiling-driven

polymerase initiation overcomes the stalling effect, leading to a

relatively distance-insensitive divergent reporter output. Finally,

in the tandem-downstream syntax, in addition to the strong sup-

pression of reporter output at high adjacent induction, a short in-

ter-gene spacing further reduces reporter output by increasing

the supercoiling density. Thus, depending on syntax, supercoil-

ing-dependent feedback can be tuned by changing inter-gene

spacing.

DNA supercoiling dynamics confer rapid, tunable
coupling between adjacent genes
To explore the impact of DNA supercoiling beyond the ensemble

steady-state behavior, we investigated the dynamic behavior of

our system. To understand the initiation dynamics of the system,

we initialized two-gene constructs with only the constitutive re-

porter gene active. After a settling period (2.8 h), we induced tran-

scription of the adjacent gene (Figure 3A). We observe that

expression dynamics vary extensively by syntax. In the conver-

gent syntax, we observe anti-correlated dynamics, with ‘‘either-

or’’ promoter activity (Video S1). In contrast, the divergent syntax

supports high levels of expression from both genes (Video S2).

When comparing the two tandem orientations, we observe strong

biasing of expression toward the upstream gene with stochastic

bursts of expression from the downstream gene (Videos S3 and

S4). While this upstream dominance does not completely disable

the downstream gene, activation of the upstream gene reduces

the average expression of the downstream reporter.

To ensure that this observed behavior was not an artifact of

enabling adjacent induction later in the simulation, we need to

verify that the two-gene ensembles are ergodic (not kinetically

trapped or otherwise dependent on initial condition). To start, we

examined the ensemble expression distribution at the simulation

endpoint (Figure S1B), and found that we recapitulate the popula-

tion behavior observed in Figure 2D. As an additional check, we

plotted the ensemble-averaged supercoiling density both before

(at 2.3 h) and after (at 11 h) adjacent gene induction (Figure 3B).
Figure 2. Supercoiling-dependent feedback induces syntax-specific e

(A) Two-gene circuits serve as a testbed for investigating supercoiling-mediated

gene (gray).

(B) Two classes of boundary conditions are simulated. Linear boundary conditio

whereas circular boundary conditions allow supercoiling generated at one gene

reporter expression is plotted as a function of the level of induction of the adjacent

to the uninduced expression case by dividing mRNA counts by a constant value p

the linear case).

(C) Gene expression distributions of simulations with circular boundary conditions

reporter gene. For each of the four syntaxes, the expression variance can be dec

extrinsic noise is shown on the right. Reporter output is normalized by dividing m

(D) Gene expression distributions and the intrinsic to extrinsic noise ratios are sh

counts by a constant value (250 mRNAs).

(E) The mean supercoiling density of linear constructs are shown as a function of i

behavior compared with the uninduced case (dashed line).

(F) Reporter output is shown as a function of inter-gene spacing (Dx) at five differen

constant value (250 mRNAs). See also Figure S1.
If the system is ergodic, then the ensemble behavior observed

before and after the adjacent gene is turned on (snapshots of

one population separated in time) should match ensemble

behavior of simulations where the adjacent gene is time-indepen-

dently active or inactive (snapshots of separate populations). Fig-

ure 3B does replicate the behavior observed in Figure 2E, indi-

cating that the two-gene circuit populations are ergodic.

To expand our understanding of the emergent supercoiling-

dependent dynamics, we examined the temporal correlation of

transcription between both genes. To quantify the correlation

and extract temporal patterns, we computed the normalized

cross-correlation between the gene outputs following induction.

The normalized cross-correlation of two signals is itself a func-

tion of a time offset; the normalized cross-correlation at some

offset time t can be thought of as the Pearson correlation coef-

ficient between the two signals where one has been shifted by t

(Figure 3C; see "Computing cross-correlation" in STARMethods

for more detail). In particular, periodic but out-of-phase signals

appear as strong negative and positive peaks on a cross-corre-

lation plot. The time offset of peaks corresponds to the phase

offset between the signals.

The four syntaxes show starkly different cross-correlation be-

haviors (Figure 3D). The convergent system shows a large anti-

correlation at zero time offset with positive correlation peaks at

offsets around ± 2 h. This combination suggests a periodic but

out-of-phase behavior between the two genes with a period of

around 2 h, confirming that our ensemble behaves similarly to

the example simulation in Figure 3A. In contrast, the divergent

syntax shows a strong positive peak at zero time offset, showing

strong aperiodic, but correlated, behavior. The tandem syntax

shows weak correlation between genes.

We then examined how adjacent induction affects the reporter

output distributions. Visualizing the entire ensemble reporter

output distribution per condition in Figure 3E at equal induction,

we observe that adjacent induction changes both the mean and

variance of the reporter output. In particular, the widths of the

distributions change before and after induction, suggesting a

change in the noise profile. At high adjacent induction, we

observe that the upstream-tandem and divergent cases show

enhanced transcription, with the downstream-tandem and

convergent cases effectively turning off (Figure S1C).
xpression profiles

feedback. All four syntaxes include a reporter gene (colored) and an inducible

ns are simulated with adjacent ‘‘walls’’ that prevent supercoiling propagation,

to freely affect other genes in either direction around the circle. At right, mean

gene for circular and linear boundary conditions. Reporter output is normalized

er boundary condition case (10mRNAs for the circular case and 250mRNAs for

are shown, where the adjacent induced gene is equally induced relative to the

omposed into intrinsic and extrinsic noise components; the ratio of intrinsic to

RNA counts by a constant value (10 mRNAs).

own for linear boundary conditions. Reporter output is normalized by dividing

nduction of the inducible gene. Induction (colored line) displays syntax-specific

t induction levels. Reporter output is normalized by dividing mRNA counts by a
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Figure 3. Supercoiling-dependent feedback induces dynamic coupling and altered variance between genes

(A) mRNA counts over time from example individual simulations for the four syntaxes are shown. Simulations are initialized with only the reporter gene (colored)

active, with the adjacent gene (gray) enabled with equal basal expression after 10,000 s (2.8 h).

(B) The average ensemble supercoiling density is shown both before and after adjacent gene induction.

(C) The cross-correlation of two signals fðtÞ;gðtÞ at a time offset t can be calculated by ‘‘sliding’’ one mean-centered signal relative to the other mean-centered

signal and integrating the product of the resulting signals.

(D) The cross-correlation between the two genes is shown for the equal-induction case across the four syntaxes. The convergent and divergent syntaxes showed

the strongest cross-correlation, with the convergent case showing periodic behavior and the divergent case showing strong correlated expression.

(E) Distributions of the reporter output before (dotted) and after (solid) induction of the adjacent gene show changes in both the mean and standard deviation due

to adjacent expression.

(F) Ensemble noise behavior for the four simulated syntaxes is shown by plotting the standard deviation of the reporter gene across the ensemble of simulations as

a function of time. See also Figure S1 and Videos S1, S2, S3, and S4.
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As noise affects the properties of native and synthetic gene

networks, we quantified the width of the these distributions by

plotting the standard deviation of the ensemble reporter output

as a function of time (Figure 3F). Prior to induction of the second

gene, all four systems display similar standard deviations. Syn-

tax differences emerge upon induction of the second gene. We

found that syntax strongly modulates the noise behavior of the

reporter. In particular, the downstream-tandem and convergent

syntaxes show a strong increase in noise levels while the up-

stream-tandem and divergent syntaxes show a small decrease

in noise levels. These changes in noise may results from differ-

ences in transcriptional burst sizes and frequencies.

Burst dynamics vary in different models of DNA
supercoiling
Transcription occurs in bursts of activity, and native and syn-

thetic mechanisms can modify burst dynamics (Desai et al.,

2021; Chong et al., 2014; Popp et al., 2021). In our base model,

transcriptional bursting arises from the stochastic addition of

polymerases. We hypothesized that burst dynamics may explain

the distribution dynamics observed in Figures 3E and 3F. While

our base model provides a species-agnostic approach to

investigate supercoiling-mediated feedback, the mechanical

regulation of eukaryotic chromatin may introduce additional

complexity and tunability to bursting dynamics. For example, nu-

cleosomes can serve as a reservoir of negative supercoiling by

stabilizing the wrapped double-loop of DNA (Le et al., 2019).

Furthermore, at hypernegative or hyperpositive supercoiling

densities, local chromatin structure may be disrupted causing

structures such as R-loops and G-quadruplexes to preferentially

form. These structures can block polymerase binding and mo-

tion (Stolz et al., 2019). Even when including our second-order

correction term as detailed in Equation 7, our base model pre-

dicts favorable supercoiling-dependent polymerase initiation at

the hypernegative value of s = � 0:1 (Figure 4A). To address

these complexities, we implemented two alternate models that

extend our torque-response and polymerase-initiation energy

equations.

To simulate the effects of structures forming at hypernegative

or hyperpositive supercoiling densities, we penalize polymerase

initiation by adding a near-infinite positive energy penalty to po-

lymerase initiation at hypernegative and hyperpositive supercoil-

ing densities (Figure 4A) roughly matching the density at which

structures such as R-loops form (s< � 0:06; s> 0:125; Stolz

et al., 2019). Putatively, these barriers enable us to simulate

the formation of stable structures within the DNA that strongly

penalize RNAP binding while remaining agnostic to any specific

molecular structure. We find that penalization of extreme super-

coiling globally reduces supercoiling density (Figure S2A) but

maintains the qualitative syntax-dependent behavior of the

steady-state, linear systems. However, syntax-specific differ-

ences are mostly eliminated for circular templates (Figures S2B

and S2C).

To model nucleosomes, we updated our torque-response

function to phenomenologically match in vitro experimental

measurements (Le et al., 2019). Nucleosomes putatively ‘‘buffer’’

the effects of positive supercoiling by unbinding and releasing

stored negative supercoiling. We accounted for this buffering
by extending a zero-torque plateau within the region

0% s%0:031 (Figure 4A). We found that the nucleosome buff-

ering does not significantly affect the steady-state expression

profile or supercoiling density observed in Figure 2

(Figures S3A–S3C).

With these three models, we simulated the four linear syntaxes

and recorded polymerase initiation events per gene. We then

examined the distribution of both burst size, which we define as

the number of polymerase initiation events during a burst, and in-

ter-burst time, the amount of time separating two consecutive

bursts for the reporter gene (Figure 4B; see "Burst threshold

choice" in STAR Methods for more detail). Upon induction of the

adjacent gene,wefindburst dynamicsdiffer by syntax (Figure 4C).

In both the base model and the nucleosome-buffering model, the

downstream-tandem and convergent syntaxes show a reduced

burst size compared with the divergent and upstream-tandem

syntaxes. We attribute this reduction in burst size to accumulated

positive supercoiling at the site of the reporter gene’s promoter. In

contrast, induction of the adjacent gene in the divergent syntax

increases the burst size of the reporter gene, putatively due to

enhanced loading of polymerases facilitated by accumulated

negative supercoiling. With penalization of hypernegative super-

coiling density, the divergent syntax shows a decrease in burst

size, potentially due a shift in the tradeoff between polymerase

stalling and supercoiling-dependent initiation.

Examining the inter-burst time distributions, induction of the

neighboring gene shifts the upstream-tandem and divergent

syntaxes to shorter inter-burst times (Figure 4D). The down-

stream-tandem and convergent syntaxes shift to longer inter-

burst times upon induction of the adjacent gene. Interestingly,

this qualitative observation holds independently of the choice

of torque-energy model, suggesting that changes in inter-burst

time—and its inverse, burst frequency—is a syntax-dependent

effect that is largely insensitive to additional chromatin

perturbations.

From these observations, we can now understand the popula-

tion-level behaviors observed in Figures 3E and 3F. The increase

of noise and reduction of mean expression value in the down-

stream-tandem and convergent cases occurs concomitant

with an increase in inter-burst time (Figure 4D). This is expected;

if bursts occur rarely, stochastic fluctuations will have an

outsized effect on each individual simulation, enhancing popula-

tion variance. In contrast, the decrease of noise in the upstream-

tandem and divergent syntaxes is matched by a decrease in the

inter-burst time (Figure 4D). Because bursts happen more

frequently, the ensemble reporter output is more stable as we

approach the limit of constant transcription. Taken as a whole,

syntax provides a powerful design parameter for inducing and

tuning time-dependent behaviors between genes and shaping

output gene distributions.

Optimizing toggle-switch performance and stability
through circuit syntax
From oscillators to pulse generators, synthetic circuits aim to

precisely coordinate dynamic patterns of gene expression. How-

ever, emergent dynamics, mediated through DNA supercoiling,

may support or impede the performance of dynamic circuits.

To examine how supercoiling-mediated feedback influences a
Cell Reports 41, 111492, October 18, 2022 7
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Figure 4. Burst dynamics vary in different models of DNA supercoiling

(A) Twomodel perturbations are compared with the base model, one where polymerase initiation is impossible once the supercoiling density is extreme, and one

where nucleosomes provide buffering against positive supercoiling. Each model tunes either the function relating torque and supercoiling density (middle) or the

polymerase initiation energy function (bottom); changes relative to the base model are marked with a gray background.

(B) Bursts are defined as a group of consecutive polymerase loading events. The size of a burst is defined as the number of loaded polymerases, whereas inter-

burst time is defined as the gap between successive bursts.

(C) The ensemble distribution of burst size is shown for the different orientations for each of the polymerase conditions.

(D) The ensemble distribution of inter-burst time is shown for the different orientations for each of the polymerase conditions. See also Figures S1–S3.
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Figure 5. Toggle switches implemented as a mutually inhibitory pair of genes show syntax-specific stability

(A) Schematic of a synthetic toggle switch composed of mutual transcriptional repressors, A and B, which are expressed from a promoter negatively regulated by

the opposite gene. Repression follows a Hill function (center), which shows cooperativity based on the value of n. Reactions where n is greater than 1 show

cooperativity. Simulated toggle switches are regulated both by a mutually inhibitory interaction at the mRNA level and via supercoiling-dependent phenomena.

(B) The ensemblemRNA count distributions are shown as a function of syntax at four selected time points. All plots represent simulations where the Hill coefficient

has been set to n = 2:0.

(legend continued on next page)
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dynamic circuit, we applied our model to the classic repressor-

mediated toggle switch (Gardner et al., 2000). Toggle switches

are well characterized both theoretically (Gardner et al., 2000)

and experimentally (Gardner et al., 2000; Yeung et al., 2017;

Zhu et al., 2021). The behavior of a simple toggle under the addi-

tional influence of supercoiling-mediated feedback provides an

ideal testbed to understand how syntax influences circuit

performance.

A toggle switch can be constructed with two genes that mutu-

ally repress each other (Figure 5A). Ideally, such a toggle switch

exhibits bistability, generating two stable basins. If modeled with

continuous, noise-free equations, a toggle switch will remain

within one of the basins based on the initial conditions (Gardner

et al., 2000). However, if we treat the mRNA concentration

discretely with a stochastic simulation, the system escapes the

stable basin with a certain probability, depending on the size of

fluctuations relative to the steady-state values. How does super-

coiling-mediated feedback affect this probability of escape?

Howmight supercoiling-mediated feedback interact with mutual

transcriptional repression and alter toggle-switch behavior? To

answer these questions, we simulate the behavior of a two-

gene toggle switch with our model for various circuit syntaxes.

To establish the conventional dual repressor system used for

toggle switches, we abstracted the regulatory interaction of the

repressors using a Hill function to define the base promoter initi-

ation rates:

rA = r0
KA

KA + ½B�n rB = r0
KB

KB + ½A�n (Equation 1)

for r0 = 1=160 s� 1 and n = 2:0. Here, we do not explicitly model

protein production. Rather, transcriptional repression directly

depends on the mRNA counts of repressors. This parsimonious

model allows us to understand the behavior of the system

without introducing additional rate constants. We chose the

half-max value K—the mRNA count at which the promoter activ-

ity is half that of r0—to approximately match the mean steady-

state value of either stable state to ensure that the toggle switch

operates in the regime of maximum sensitivity (see "Toggle-

switch parameter selection" in STAR Methods for details). In or-

der to compare the behavior of the toggle switches, we initialized

toggle switches of different syntaxes within one of the stable ba-

sins (gene A) and induced the second gene (gene B) after 2.8 h

(see Figure S4A for example runs). The system then evolves un-

der simultaneous mutual inhibition from expression of the re-

pressors as well as from supercoiling-dependent feedback.

Circuit syntax specifies unique toggle-switch dynamics that

can be understood by visualizing the distribution of mRNA

counts over time (Figure 5B). Initially, nearly all of the simulations

in the ensemble lie along the axis corresponding to the initially

active gene, gene A. As time progresses, each ensemble ap-

proaches and fluctuates around an equilibrium. The convergent
(C) The stability, measured as the percentage of simulations in the ensemble tha

system plotted as a function of time.

(D) Expression burst size distributions of the initially active gene A are plotted as

(E) The half-life at different values of the mRNA degradation rate are shown. A

molecules, high degradation rates lead to systems with low overall mRNA conce
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syntax approaches an equilibrium where approximately half of

the population distributes into each state. In this syntax, activa-

tion of either gene causes positive supercoiling to accumulate in

the intergenic region, enhancing negative feedback between

genes and thus between states. With divergent syntax, the tog-

gle distributions converge toward monostability with low differ-

ential expression of either gene. Accumulation of negative

supercoiling between genes enhances polymerase loading,

weakening negative feedback. Finally, the vast majority of the

simulations in the tandem syntax remain in or transition to the up-

stream-active state, demonstrating upstream dominance. We

find that these results qualitatively hold for varying values of n,

the repressor cooperativity coefficient (Figure S4E). We find

that even in the absence of cooperativity, n = 1:0, the conver-

gent syntax shows some level of bistability (Figure S4D), indi-

cating that supercoiling-mediated feedback introduces a degree

of nonlinearity that can reinforce toggle-switch function.

To quantify these distribution results, we computed the stable

fraction of the ensemble, defined as the fraction of simulations

that have never left the initial starting basin at a certain simulation

time. The stable fraction monotonically decreases toward zero

with time, as simulations that cross into the other stable basin

are no longer counted as stable even if they return to the original

basin. We observe substantial syntax differences in the dynamics

of the stable fraction of the ensemble (Figure 5C). While the tan-

dem orientations represent the extremes of stability, the conver-

gent and divergent syntaxes exhibit intermediate stabilities. As ex-

pected, different burst dynamics characterize toggle-switch

behaviors, varying by syntax. In particular, we observe that the

divergent syntax displays reduced burst size compared with the

other syntaxes (Figure 5D). In contrast, the inter-burst time distri-

butions do not significantly vary with syntax (Figure S4C), sug-

gesting that burst size, not burst frequency, is a key parameter

tuned by supercoiling-mediated feedback in this context. We hy-

pothesize that the divergent toggle switch may be governed by a

conflicting interaction at the promoter level between supercoiling-

mediated feedback and mutual inhibition. Overall, these trends

suggest that the observed toggle-switch behavior emerges

through correlated (or anti-correlated) transcription and changes

in burst size, suggesting that toggle-switch behavior could be

tuned orthogonally by supercoiling-mediated feedback.

For any stochastic system, the steady-state number of mole-

cules influences the stability of the system. As the reservoir of

molecules grows larger, the size of fluctuations relative to the to-

tal concentration decreases. For toggle switches, we expect

that, as the number of steady-state mRNA molecules grows,

we should approach the theoretical, continuous solution that

predicts that no state switching occurs. To examine this expec-

tation, we modified the simulated mRNA degradation rate,

scaling K as described in "Toggle-switch parameter selection"

in STARMethods, and plotted the resulting half-lives (Figure 5E).

As the mRNA degradation rate goes to zero, we increase the
t have never escaped the initial starting basin, of the four starting states of the

a function of circuit syntax.

s the mRNA degradation rate principally sets the average number of mRNA

ntration and concordant stochastic instability. See also Figure S4.
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Figure 6. Supercoiling-mediated feedback supports robust transcriptional coordination within the zebrafish segmentation clock circuit

(A) Schematic of the mutually inhibitory her1-her7 system. Either a her1-her1 dimer or a hes6-her7 dimer can bind to either promoter, preventing transcription of

the downstream gene.

(B) Coupling between her1-her7 genes on the same allele supports proper zebrafish somite formation (Zinani et al., 2021). Disruption of this intra-allele coupling

through unpaired mutations in her1-her7 leads to loss of proper segmentation.

(legend continued on next page)
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reservoir size and observe that the half-life for all syntaxes ap-

proaches the simulation upper-limit on the half-life (Figure 5E).

Interestingly, increasing mRNA degradation rates reduces the

asymmetry in the half-lives between the tandem-upstream and

tandem-downstream syntaxes. These results suggest that state

switching increases as mRNA degradation rate increases as

expected.

DNA supercoiling tightly coordinates expression of
proximal segmentation genes
DNA supercoiling provides a mechanism for the precise coordi-

nation of co-localized genes. Through colocalization, native cir-

cuits may incorporate transcription-linked feedback mecha-

nisms to reduce noise and tune cell-state specific output in

tightly regulated, dynamic processes such as somite formation.

In zebrafish, proper somite segmentation requires precise coor-

dination of two clock genes, her1 and her7. her1 and her7 form

an inhibitory feedback loop encoded in a divergent syntax (Fig-

ure 6A). Proper somite formation requires one intact allele of

her1 and her7, provided these genes are expressed from the

same locus (Zinani et al., 2021). Mutant zebrafish embryoswhere

her1 and her7 are only expressed from separate loci eliminate

any supercoiling-mediated coupling while retaining the dimer-

mediated inhibitory feedback loop. Zinani et al. (2021) found

that, in the gene-unpaired embryos, transcriptional coordination

between genes is lost and proper somite segmentation is disrup-

ted (Figure 6B). Consequently, physical colocalization repre-

sents an important feature supporting transcriptional coordina-

tion between genes and proper somitogenesis, which may be

mediated by supercoiling-mediated feedback.

Based on our above results from two-gene systems, we hy-

pothesized the feedback from DNA supercoiling supports coordi-

nation between discrete transcripts expressed from divergent

promoters. Using our full computational model, we replicated

the previously developed stochastic reaction network. Impor-

tantly, her1 and her7 are regulated in a binary fashion; the

promoters are either completely off when bound by a dimer or ex-

pressed at their basal rate when unbound. We simulated two

cases: an unpaired systemwhere the simulated geneswere sepa-

rated by a large distance (1 Mb) to prevent supercoiling interac-

tions, and a gene-paired system where her1 and her7 were

spaced at their genomically active locations. In the paired system,

linear boundary conditions were used with boundaries chosen at

the nearest adjacent genes on each side in the zebrafish genome.

Strikingly, the gene-paired case shows strong periodic levels

of mRNA expression (Figure 6C). In fact, such levels of period-

icity are not observed even in the original computational model

presented by Zinani et al. (2021) (Figures S5A and S5B); we

confirmed that this is not simply an artifact of the uniform time re-

sampling performed in order to compare our model behavior to

the literature model (Figure S5C). The level of periodicity appears

sensitive to our second-order polymerase initiation model. Per-
(C) Example simulations of her1 and her7 mRNA levels are shown as a function

(D) The ensemble cross-correlation between the her1 and her7mRNA counts is sh

combined with large roughly symmetric minima observed in the gene-paired cas

(E) The distribution of correlation coefficients between the her1 and her7 mRNA

(F) The oscillation amplitude over the ensemble is shown for the various conditio
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forming simulations with a weakened second-order penalty

term (see STARMethods; Figures 2 and S7) reduces the amount

of periodicity observed (Figures S5D to S5G).

Examining the time-dependent nature of the her1-her7 sys-

tem, we plotted the ensemble cross-correlation for paired and

unpaired genes (Figure 6D). Here, we found that, in addition to

the enhanced positive correlation peak at a time delay of t = 0

seconds, the paired case showed exceptionally strong, nearly

symmetric cross-correlation at positive and negative time off-

sets. Such cross-correlation is the hallmark of a periodic signal.

Thus, both individual examples (Figure 6C) and ensemble

behavior (Figure 6D) show that supercoiling-mediated feedback

provides a strong mechanistic driver of inter-gene coordination

in the her1-her7 clock circuit that is inaccessible to solely

dimer-mediated regulation.

In order to confirm that these results apply across the

ensemble, we examined the ensemble correlation between the

counts of her1 and her7 mRNA (Figure 6E). We found that while

the unpaired case shows minimal correlation, the gene-paired

case shows strong correlation between the two clock genes.

We attribute this strong, periodic correlation to the additional

biophysical coupling conferred by the divergent syntax. Notably,

we observed that our model predicts an increase in the ampli-

tude of oscillations (Figure 6F). In vivo, loss of gene pairing re-

duces oscillation amplitude, leading to improper segmentation

(Zinani et al., 2021).

Because this periodic behavior depends on biophysical

coupling, we investigated whether the periodicity was robust

to topoisomerase activity, nucleosome buffering, or hypernega-

tive chromatin structure formation. We found that intergenic

topoisomerase relaxation (see STAR Methods) does not abro-

gate the periodic behavior, with strong correlated oscillations still

visible (Figures 6D–6F). However, intergenic topoisomerase ac-

tivity does reduce the cross-correlation after a few periods, indi-

cating that topoisomerase activity contributes to variance in

oscillation frequency while still supporting strongly correlated

her1 and her7 expression. Intragenic topoisomerase activity

showed similar behaviors (Figure S5I). Finally, we found that

while penalization of hypernegative supercoiling densities

eliminates periodic behavior (Figures S2D to S2G), periodicity

is maintained in the presence of nucleosome buffering

(Figures S3D to S3G). Thus, we propose that supercoiling-medi-

ated feedback offers a mechanism to support robust oscillations

in the her1 and her7 network for proper somite formation.

DISCUSSION

Transcription induces significant variance in gene expression. At

a single-cell level, individual genes are expressed stochastically,

with most genes experiencing relatively long periods of quies-

cence punctuated by bursts of polymerase activity. Phenomeno-

logical models of this process based on stochastic probability
of gene syntax and topoisomerase activity.

own across pairing and topoisomerase conditions. The large maxima at t = 0

es signal the strong cyclic behavior observed experimentally in zebrafish.

counts is shown for the various pairing and topoisomerase conditions.

ns. See also Figure S5.
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distributions can provide some insights, but defining the me-

chanically regulated physical factors that influence RNA poly-

merase dynamics will improve existing models of gene regula-

tion and support enhanced design of transgenic systems.

Importantly, we sought to develop a model that would define a

set of experimentally testable predictions as well as lay the

groundwork for future modeling across multigenic loci and

circuits.

In this work, we developed a model of supercoiling-mediated

feedback that captures emergent coupling between neighboring

genes to influence expression levels as well as dynamics. This

model allowed us to tractably compute polymerase activity at

the scale of synthetic circuits (Figure 2). Within supercoiling-

mediated feedback, we included both supercoiling-dependent

polymerase motion terms and supercoiling-dependent polymer-

ase initiation terms. This computational framework lays the

groundwork for understanding how DNA supercoiling functions

as a regulatory mechanism that can be integrated with canonical

biochemical models of gene regulation. Using this model, we ex-

tracted insights into howmechanical and biochemical regulation

combine to generate diverse profiles of expression and support

or impede the performance of gene networks.

We find that induction of neighboring genes significantly in-

fluences the transcriptional activity of both genes (Figure 2).

Syntax-specific differences in DNA supercoiling dynamics,

expression profiles, and noise emerge due to physical

coupling. We find that such a system regulated by this biophys-

ical coupling is responsive to expression level changes in adja-

cent genes, with both mean expression and population vari-

ance changing as a function of gene orientation (Figure 3).

The observed supercoiling-mediated feedback is itself depen-

dent on inter-gene spacing, mRNA degradation rate, and other

variables tunable in an experimental setting. Generally, accu-

mulated negative supercoiling leads to correlated bursting,

which occurs concomitant to a decrease in intrinsic noise. In

contrast, accumulated positive supercoiling can lead to anti-

correlated bursting, which instead enhances intrinsic noise.

While the tandem syntax does not lead to large supercoiling

accumulation in the intergenic region, we observe upstream

dominance, where the upstream gene is more highly expressed

than the downstream gene.

Our prediction of burst dynamics (Figure 4) complements

theoretical and experimental investigations of cooperative inter-

actions of RNA polymerases arising from the beneficial cancella-

tion of positive and negative supercoiling generated by adjacent

polymerases (Sevier and Hormoz, 2022; Kim et al., 2019). We

predict that syntax causes a 2- to 3-fold change in burst size (Fig-

ure 4C) but can shift inter-burst time by an order of magnitude

(Figure 4D). In addition, the syntax-specific trends in inter-burst

time are not strongly affected by other potential mechanical reg-

ulators of eukaryotic chromatin—nucleosomes and strained

structures such as R-loops—suggesting that syntax may

robustly control gene expression through differences in burst dy-

namics. While we do not directly examine transcription elonga-

tion rates, we similarly predict syntax-specific differences in

expression dynamics but observe distinct syntax-specific be-

haviors in our model (Sevier and Hormoz, 2022; Tripathi et al.,

2021). We also find that intergenic distance only weakly affects
supercoiling feedback (Tripathi et al., 2021). In alignment with

experimental work, we find that positive supercoiling accumu-

lates in the intergenic region of convergently oriented native

genes (Guo et al., 2021). When combined with sequencing

methods that precisely measure nascent mRNA transcription

(Mellor et al., 2016), these methods may provide a window into

experimental systems in order to test theoretical predictions of

our work and others.

The fast timescale of supercoiling-mediated feedback offers

access to a uniquely tunable and orthogonal form of gene regu-

lation. In contrast to regulatory mechanisms dependent on rela-

tively long timescales, such as mRNA- and protein-mediated

systems, supercoiling-mediated feedback occurs at the time-

scale of seconds. Polymerases can stall and unstall each other

within seconds, while local polymerase loading rates can vary

over the course of minutes. By combining the fast dynamic

feedback with slower classic feedback mechanisms, circuit

regulation can be selectively stabilized or destabilized. We

found that specification of syntax within a simple two-gene tog-

gle switch generated diverse behaviors, including a reasonably

stable switch, a hypersensitive toggle with hysteresis, and an

asymmetric system that preferentially decays toward a single

target state (Figure 5). As a rapid mechanism for coordinating

transcriptional dynamics, supercoiling-dependent feedback

may support intergenic coordination in native systems. Exam-

ining the zebrafish segmentation clock, we find that addition

of supercoiling-mediated feedback recapitulates the synchro-

nized, periodic expression of the clock genes, her1-her7

(Figure 6).

Our model integrates supercoiling-mediated biophysical feed-

back with classic gene regulation motifs that are well studied in

native and synthetic contexts. This unified framework brings us

closer to an understanding of how supercoiling contributes to

transcriptional regulation. We offer testable predictions about

the performance of genetic circuits. The predicted changes in re-

porter output, supercoiling density, and burst dynamics

observed in Figures 2–4 are experimentally accessible withmod-

ern sequencing and single-cell imaging technology (Guo et al.,

2021; Mellor et al., 2016; Patel et al., 2022). Experimental verifi-

cation of our theoretical results will aid in constructing a mecha-

nistic understanding of how transcription-induced supercoiling

couples expression. Harnessing these insights will enable gene

regulation at the level of transcription, providing a robust method

to control expression dynamics, levels, and noise.

Limitations of the study
In deriving our model, wemade several simplifying assumptions.

Our derivation of the energy function for supercoiling-dependent

polymerase initiation adds relevant molecular detail to our

model. The second-order correction term reflects the asymp-

totic relationship observed in in vitro assays between torque

and supercoiling density for underwound DNA (Le et al., 2019).

Inclusion of this correction supports the periodic behavior of

the native her1-her7 clock circuit, suggesting this term may

accurately capture regulation in vivo. For simplicity, we model

the dynamic processes of RNAP binding, initiation, and pause

release as a single reaction. In real biological systems, each of

these processes may vary across the genome by sequence
Cell Reports 41, 111492, October 18, 2022 13
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and by the presence of nucleosomes, transcription factors, and

other DNA-binding proteins. Formation of supercoiled structures

shows sequence bias in vitro that may affect in vivo structures

and gene regulation (Kim et al., 2018).

While we do approximate the behavior of the system in the

presence of hypernegative/hyperpositive chromatin structures

and nucleosomes, we do not explicitly model the presence of

these and instead perturb our torque and polymerase binding

energy functions. This implicit simulation method may not accu-

rately capture the discrete nature of these phenomena, espe-

cially in the case of positive supercoiling waves displacing nucle-

osomes. Furthermore, while real topoisomerases dynamically

relax chromatin and are often recruited to sites of active tran-

scription (Baranello et al., 2016), we use a simplified model

that instantly relaxes DNA in a non-specific manner. We find

that our systems are mostly insensitive to this simple model of

topoisomerase activity; future work using a different topoisomer-

ase activity model may reveal additional roles for supercoiling

relaxation.

Our model also excludes polymerase collision, premature

termination, and the impact of 3D structures and loop domains

formed by protein complexes such as CCCTC-binding factor

(CTCF) and other structural maintenance of chromosomes

(SMC) proteins. More broadly, we assume that regions of simu-

lated chromatin are uniformly accessible and have equal torque

responses during polymerase elongation; these assumptions

may fail at the boundaries of chromatin domains. Finally, we

also neglect the speed of supercoiling diffusion. While this is ex-

pected to be a negligible effect at the scale considered in this

work, supercoiling diffusion remains slow at the scale of hun-

dreds of kilobases to megabases.
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METHOD DETAILS

Supercoiling-dependent transcription model
Supercoiling is defined as the amount of excess twist 4 relative to relaxed DNA. Relaxed DNA rotates one full revolution per z 10

basepairs (1bpz0:34 nm); thus its relaxed twist is u0 = 1:85 radians/nm. Supercoiling density can generally be defined as a varying

function of genomic location sðzÞ. However, in a region of constant supercoiling density, we can use the excess DNA twist 4i;4i +1 at

the endpoints zi; zi +1 to define the supercoiling density as:

s =
4i � 4i + 1

u0ðzi + 1 � ziÞ (Equation 2)

For a polymerase with 41 > 0 between endpoints with 40 = 42 = 0, Equation 2 implies that the supercoiling density is positive in

front of the polymerase and negative behind the polymerase (Figure 1). Following on the work of Sevier et al. (Sevier and Levine,

2018), we assume that on the length scales of synthetic and native circuits of interest (Oðz10kbÞ), the supercoiling density is constant

in all regions between polymerases and other barriers. Because supercoiling diffusion and plectoneme hopping (Loenhout and Dek-

ker, 2012) occur at rates faster than transcription (supercoiling diffusion: DzO
�
0:5 kb2

s

�
versus transcription rate: v0z0:05 kb

s ) (Muniz

et al., 2021), the supercoiling generated by a polymerase will diffuse outward far more rapidly than polymerases canmove. As in pre-

vious reported work, we make a pseudo-steady assumption for inter-RNAP supercoiling—assuming that Equation 2 holds between

polymerases—over the relatively small (� 10 kb) genomic distances considered in this work in order to simplify the resulting model.

How does transcription both drive the process of supercoiling generation and react to changes in local supercoiling? Under the

assumption of supercoiling relaxation, each polymerase is defined by four variables—the one-dimensional genomic location of

the polymerase zi, the length of the nascent RNA xi, the excess twist at the location of the polymerase 4i, and the rotation angle

of the polymerase (Figure 1). Then, two governing equations define the motion of all polymerases (Sevier and Levine, 2018). First,

we equate linear polymerase motion with the rotational motion required to track the DNA groove:
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u0

dzi
dt|fflffl{zfflffl}

RNAP velocity

=
dqi
dt

z}|{RNAP rotation

+
d4i

dt|{z}
supercoiling generation

(Equation 3)

where the change in qi represents polymerase rotation and the change in 4i represents local rotation of the DNA. The second equation

provides a torque balance between DNA-mediated torques on the left hand side and torque caused by drag acting on the nascent

RNA:

tðsðzi;4i� 1;4i + 1ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
torque acting on RNAP

+ c
d4i

dt

zffl}|ffl{supercoiling restoring force

= hxni
dqi
dt|fflfflffl{zfflfflffl}

nascent RNA drag

(Equation 4)

To develop a final system of ordinary differential equations, we still must define the torque response function tðsÞ and the polymer-

ase velocity function dz
dt = vðtÞ. With these two functions, Equations 3 and 4 can be solved as in Sevier and Levine (2018). Here, we

use Marko’s torque-response model of supercoiling which accounts for the thermodynamic behavior of both non-buckled, twisted

DNA and buckled, plectonemic DNA (see Equations (S1) and (S4) in supplemental section B) (Marko, 2007). The resulting tðsÞ func-
tion exhibits a phase transition, where the torque response is nearly constant at intermediate values of swhere the DNA is transition-

ing from a locally-twisted phase to a plectonemic-phase (Figure S6A).

For the velocity response of a polymerase experiencing a torque tf in front and tb behind, we model polymerase stalling as:

vðtf ; tbÞ =
v0

ð1+ eðjtf j � tsÞ=twÞð1+ eðjtb j � tsÞ=tw Þ (Equation 5)

where the stall torque ts = 12 pN nm and stall-width tw = 3 pN nm define a sigmoidal stall-response curve. As shown in

Figures S6E and S6F, our results are only weakly dependent on the specific choice of ts and tw. Importantly, our selected

phenomenological term will stall polymerase motion if either the torque upstream or downstream exceeds the stall torque ts.

Some models choose a stalling equation that only stalls if the difference between the upstream and downstream torque exceeds

a stall torque (Tripathi et al., 2021); we chose this form, reasoning that the DNA unwinding and rewinding process opposed,

respectively, by upstream and downstream torque could independently stall. When simulated, the difference between these stall-

ing models is small in practice; polymerases at the start or end of the burst encounter both high upstream and downstream tor-

ques and a high torque difference, whereas polymerases in the middle of a burst experience both lower adjacent torques and a

lower torque difference.

Taking the above equations together, we can simulate the coupled motion of an arbitrary number of polymerases as a single

coupled ODE system. We further examine different experimental systems by implementing different boundary conditions that allow

us to simulate both plasmid systems and genomically-integrated systems (see Boundary conditions).

Supercoiling-dependent initiation model
While the described differential equation system can simulate polymerase motion, we need a way to model the addition of

polymerases to simulated genes. A simple strategy is to assume a supercoiling-independent initiation rate and use a stochastic

simulation method to randomly add polymerases to transcriptional start sites at a certain fixed rate. However, this simple model

assumes that polymerases can bind equally well to initiation sites independent of local supercoiling, missing supercoiling-depen-

dent binding dynamics (Revyakin et al., 2004). In order to include supercoiling in a polymerase initiation model, we relate the basal

expression rate to a corresponding base energy term. We can then additively introduce extra energy costs for polymerase binding

under different local supercoiling conditions. Under the approximation that the direct energetic cost of locally melting the DNA to

fit in the RNAP groove dwarfs the relative change in unwinding energy caused by supercoiling, the majority of the energetic cost

comes from inserting supercoiling ahead and behind the inserted polymerase. Under this assumption, the first-order supercoiling

energetic correction can be written as:

Esc = 1:2$2p$tðsÞ (Equation 6)

Is this a good approximation? We can estimate the energetic cost of local melting, and find that neglecting local melting leads to a

minor change in the resulting energy as seen in Figure S6B. A full derivation of Equation 6 is given in Methods S1.

While this first-order energetic term introduces much-needed behavior to the modeled system—where locally high positive super-

coiling decreases the RNAP initiation rate and locally negative supercoiling increases the RNAP initiation rate—at extreme values of

s, this energetic term gives aphysical predictions. In particular, under highly negative supercoiling densities, the energetics of poly-

merase loading become increasingly favorable, with loading sometimes occurring more than two orders of magnitude faster when
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comparedwith relaxedDNA. To correct for this behavior, we add a second-order (quadratic) term that constrains polymerase loading

at highly positive or negative local supercoiling:

Esc = 1:2$2p$tðsÞ+a$t0$s
2 (Equation 7)

for t0, the relevant scale factor in the tðsÞ equation (Equation (S1) and (S3) from (Marko, 2007)) and a, a positive tunable parameter. As

the tðsÞ equation is linear ins outside of the phase-transition region, this added s2 term can be contextualized as an additional term in

the Taylor expansion of the physically-realistic EscðsÞ equation. This form of the binding energy enables us to qualitatively match the

experimentally observed asymptotic behavior between torque and supercoiling for underwound DNA (Le et al., 2019).

For these three models of supercoiling-dependent initiation,we found that the supercoiling-independent initiation model predicted

only small changes in reporter output (Figure S7A). Comparing the first- and second-order models, we found that a critical value of a

existed, az0:2, above which the second-order model demonstrated emergent non-monotonic behavior (Figure S7). At low values of

a, the second-order model behaves similarly to the first-order model, so we used a = 0:025 for this work. Increasing a beyond this

chosen value appears to scale down reporter output without qualitatively modifying behavior (Figure S7).

When simulating the ODEmodel, the rate of stochastic polymerase initiation, rinitiation, varies continuously based on the local super-

coiling density s at the transcription start site as:

rinitiation = rbase rate$e
�Esc=ðkBTÞ (Equation 8)
Additional discrete reaction model
Many of the native and synthetic systems of interest include mechanisms of gene regulation that rely on other regulatory species. In

order to analyze these types of systems using our supercoiling model, we extended our model to simultaneously simulate arbitrary

discrete stochastic equations—such as those commonly used in the literature to model protein production, degradation, dimeriza-

tion, and more. This addition allowed us to model discrete events otherwise not accounted for in the continuous model.

Importantly, this framework allows us to simulate the activity of topoisomerases.While the total amount of supercoiling (the integral

of supercoiling density) is conserved, topoisomerases can be modeled as stochastic events that redistribute supercoiling in certain

regions. Here, we simulated the removal of supercoiling in either intergenic or intragenic regions. Removal of supercoiling in inter-

genic regions is performed by updating the rotation of polymerases on adjacent genes to make the intergenic supercoiling density

zero. After relaxation of supercoiling in intragenic regions, polymerases on the gene experience a constant supercoiling density which

conserves overall supercoiling. With the exception of the segmentation gene network simulations in Figure 6 and related supple-

mental figures, we found that inclusion of topoisomerase relaxation did not appreciably change the observed results. Thus, unless

otherwise stated, simulations were performed without topoisomerase relaxation.

In addition, we allowed the base initiation rate of genes to vary as an arbitrary function of all species concentrations in the model

(Si), such that Equation 8 becomes:

rinitiation = rðSiÞ$e�Esc=ðkBTÞ (Equation 9)

By combining discrete reactions with the ability to dynamically change polymerase initiation rates, we are able to simulate a wide

range of phenomena. For example, a cooperative repressive interaction between some repressor protein R and a promoter could be

modeled using a repressive Hill function:

rinitiationðRÞ =
1

1+
�
R
K

�n$e�Esc=ðkBTÞ

More generally, we can use stochastic formulations of other regulatory mechanisms and test how these mechanisms behave in

concert with supercoiling-mediated feedback.

Boundary conditions
Key to our simulations is calculating the supercoiling density across the domain using Equation 2. For simulations using linear bound-

ary conditions, we use the left and right edges as boundaries, assigning excess twist 4 = 0 at both boundary locations. Then, the

supercoiling density can be defined between every polymerase. The location of the boundary conditions for the simulations is

described in Table S3.

For simulations using circular boundary conditions, we must define how generated supercoiling ‘‘wraps around’’ the edges of the

simulation. To do this, we choose an arbitrary origin, and order polymerases based on their (clockwise) position from the origin. In

Table S3, the first boundary location is used as this origin location and the second boundary location is the length of the circle, relative

to the origin. As in the linear case, when there are zero polymerases loaded, the supercoiling density is uniformly 0. In addition, for

circular boundary conditions, the supercoiling density is also uniformly 0 when a single polymerase is present; when assuming fast

supercoiling relaxation, a single polymerase on a circle can never accumulate negative or positive supercoiling.
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For two ormore polymerases, we create a list of excess twists, duplicating the endpoints as 4n;41;/;4n;41. We additionally project

the locations of the wrapped polymerases past the origin (e.g., the position of the wrap-around 4n is placed at ztotal length � zn), then

compute the supercoiling density as in the linear case.

Burst threshold choice
We calculated burst size and inter-burst time by using a burst threshold. From polymerase initiation times, we calculate the time be-

tween successive polymerase additions. Intra-addition times greater than the burst threshold form the boundaries between different

expression bursts. We define the burst size to be the number of polymerases included in a burst, and the inter-burst time to be those

intra-polymerase-addition times greater than the burst threshold. For the main text, we used a burst threshold of 30 s; specifically,

this means that bursts ended if 30 s passed without a new polymerase being added.

In Figures S1D and S1E, we reanalyze the data presented in Figures 4C and 4D for different burst thresholds. We find that using a

burst threshold of twenty or sixty seconds does not significantly affect the qualitative results observed. However, using a ten second

burst threshold does dramatically shift the resulting burst size and inter-burst time distributions, with the inter-burst time distribution

becoming concentrated around ten seconds. This indicates that a ten-second burst time is too short and incorrectly separates

bursts.

Toggle-switch parameter selection
The half-max value K, the mRNA count at which the promoter activity is half that of r0, is chosen here to approximately match the

mean steady-state expression of the steady states. The mean steady-state value is identified using simulations where only one of

the toggle switch genes is enabled; this allows us to directly account for the influence of supercoiling-mediated feedback on the

steady state mRNA concentration. With this choice of K, we ensure that the toggle switch operates in the regime of maximum sensi-

tivity (e.g., the stable basin steady-state value is in the middle of the sigmoidal repression curve).

In Figure 5E, we tune the mRNA degradation rate, which directly impacts the mean steady-state value. If the mRNA degradation

rate is doubled, we expect that the mean steady-state value should decrease to half its original value. To compare between these

otherwise disparate conditions, we scaled the K value alongside the mRNA degradation rate, dividing by the fold increase in the

mRNA degradation rate.

QUANTIFICATION AND STATISTICAL ANALYSIS

ODE and stochastic simulation
The core ordinary differential equations were simulated using a Tsitouras’s explicit Runge-Kutte 4-5 order method (Tsitouras, 2011).

Normally, one implements stochastic simulations using a time-jumping method such as Gillespie’s method. However, because the

propensity of our stochastic events changes continuously with the continuous simulation, we need a stochastic solver that can be

applied within the continuous integrator loop. Here, we used DifferentialEquations.jl, a performant Julia package that allows layered

differential and stochastic equations (Rackauckas and Nie, 2017).

Summarizing stochastic simulations
Stochastic simulations inherently sample from an underlying population distribution. As single simulations may not adequately repre-

sent the population behavior, we simulated ensembles of simulations and chose an ensemble size that was large enough to show the

desired population behavior. These simulations then were post-processed, by either taking the average over each ensemble or by

directly showing population distributions, summarized by a kernel density estimate (smoothed histograms provided by the Python

package seaborn). The ensemble size for each data plot is summarized in Table S1.

Computing cross-correlation
We computed the cross-correlation between the gene outputs following induction (Figure 3C), normalized by the geometric mean of

the auto-correlation of these outputs. Strong negative or positive peaks evenly spaced around t = 0 is a hallmark of periodic

behavior, with the time offset of the peak encoding the phase offset between the signals. For two signals fðtÞ and gðtÞ, the normalized

cross-correlation at a certain time offset t is bounded between ± 1 and can be thought of as the correlation coefficient between the

unshifted version of one of the signals (fðtÞ) and the other signal shifted in the time axis by t (gðt + tÞ). Mathematically, we use:

cross � correlationðtÞ = ðf+gÞðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðf+fÞð0Þ$ðg+gÞð0Þp (Equation 10)

for

ðf+gÞðtÞ =
X
t

ðfðtÞ � CfðtÞDÞðgðt + tÞ � CgðtÞDÞ (Equation 11)

In fact, for t = 0, the normalized cross-correlation of the two signals is exactly the Pearson correlation coefficient. The shape of the

cross-correlation curve can also reveal periodic and other time-dependent correlative behaviors.
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